Algorithms: Graph Representation (Directed Graphs, Weighted Graphs)

Adjacency Matrix (Directed)

	1	2	3	4
1	0	1	1	1
2	0	0	0	1
3	0	0	0	1
4	0	0	0	0

Data Structure to Use: (n * n) Matrix.

Example: int adj [n][n];

Adjacency List (Directed)

Data Structure to Use: 2D vector or array of linked list.

Example:

vector<int> adj [n];
vector< vector<int> > adj;

Adjacency Matrix (Directed and Weighted)

	1	2	3	4
1	0	5	7	5
2	0	0	0	6
3	0	0	0	8
4	0	0	0	0

Data Structure to Use: (n * n) Matrix.

Example: int adj [n][n];

Adjacency List (Directed and Weighted)

Data Structure to Use: 2D vector or array of linked list.

Example:

vector< pair<int, int> > adj [n];

Adjacency Matrix vs Adjacency List

- Adjacency Matrix:
- \square Space Complexity: $O(n^2)$
- Time complexity of Checking if an edge (u,v) exists: O(1)

- n: total number of nodes
- m: total number of edges
- d: degree (number edges connected to that node)

- Adjacency List:
- \square Space Complexity: O(n+m)
- $lue{}$ Time complexity of Checking if an edge (u, v) exists: O(d)

The benefit of using adjacency lists is that we can efficiently find the nodes to which we can move from a given node through an edge. For example, the following loop goes through all nodes to which we can move from node s:

```
for (auto u : adj[s]) {
    // process node u
}
```