Algorithms:

Graph Representation
(Directed Graphs,
Weighted Graphs)

‘ Adjacency Matrix (Directed)

[
(\®)

/\
\/

AW NN =
oS o o O
S O O -
S O O =
S e

Data Structure to Use: (n * n) Matrix.

Example: int adj [n][n];

RANIT DEBNATH AKASH 2

‘ Adjacency List (Directed)

/\
\/

B VS TR NS

Data Structure to Use: 2D vector or array of linked
list.

Example:
vector<int> adj [n];
vector< vector<int> > adj;

RANIT DEBNATH AKASH 3

Adjacency Matrix (Directed and Weighted)

2
B

2&
> 4
o

5
3

AW N —

[y
[\®)

oS o O O
S O O W
S O O 1 |2
S SN W

Data Structure to Use: (n * n) Matrix.

Example: int adj [n][n];

RANIT DEBNATH AKASH

4

Adidcency List (Directed and Weighted)

/\
\/

w6 @y

g 4> 6)

g 4 8)

B VS TR NS

—>

Data Structure to Use:
2D vector or array of linked list.

Example:
vector< pair<int, int> > adj [n];
RANIT DEBNATH AKASH

5

Adjacency Matrix vs Adjacency List

) Adjacency Matrix:) Adjacency List:
) Space Complexity: 0(n?)) Space Complexity: 0 (n + m)
) Time complexity of Checking if an edge (u,v)) Time complexity of Checking if an edge (u, v)
exists: 0(1) exists: 0 (d)

The benefit of using adjacency lists is that we can efficiently find the nodes
to which we can move from a given node through an edge. For example, the
following loop goes through all nodes to which we can move from node s:

for (auto u : adj[s]) {
// process node u

1 n: total number of nodes

}

1 m: total number of edges

] d: degree (number edges connected to that node)

RANIT DEBNATH AKASH 6

